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Abstract. In real-life situations, where humans optimize their behaviors to
effectively interact with unknown and dynamic environments, their brain
activities are inevitably nonstationary. Electroencephalogram (EEG), a widely
used neuroimaging modality, has a high temporal resolution for characterizing
the brain nonstationarity. However, quantitative measurements of EEG non-
stationarity and its relations with human cognitive states and behaviors are still
elusive. This study hypothesized that EEG nonstationarity could be modeled as
changes of active sources decomposed by an Independent Component Analysis
and proposed a model-based nonstationarity index (NSI) to quantitatively assess
these changes. We tested the hypothesis and evaluated the NSI on EEG data
collected from eight subjects performing a sustained attention task. Empirical
results showed that values of the proposed NSI were significantly different when
the subjects exhibited different levels of behavioral performance that inferred
their brain states. The proposed approach is online-capable and can be used to
track EEG nonstationarity in near real-time, which enables applications such as
monitoring brain states during a cognitive task or predicting human behaviors in
a brain-computer interface.
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1 Introduction

In real-life situations, where humans organize and optimize their behaviors to deal with
challenges in complex and ever-changing environments, their brain activities are
inevitably nonstationary. Among a variety of biosignals, electroencephalography
(EEG) has consistently exhibited neural correlates of human cognitions and has a high
temporal resolution for characterizing the brain nonstationarity. However, more work is
required to quantitatively measure the EEG nonstationarity and to investigate its
relations with changes in human cognitive states and behaviors.

Previous EEG studies focused on time-frequency analyses of recordings from each
scalp channel and found that changes of EEG band power correlated with brain states
such as drowsiness levels [1, 2] under the assumptions that the number of underlying
performance-related brain sources were fixed and their spatial locations were stationary.
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On the contrary, this study assumed that as the brain changes between alertness and
drowsiness states, the active brain sources might vary significantly.

Recent studies [3, 4] proposed a nonstationarity index (NSI) based on an adaptive
Independent Component Analysis (ICA) method for detecting changes of co-activated
brain sources or electrode displacements. Instead of using the NSI to evaluate errors of
the adaptive ICA model, this study proposed to use the NSI to continuously and
quantitatively assess deviations of brain activities from a fixed ICA model of a known
brain state. In addition, we hypothesized that this concept could be applied to ICA
models trained with EEG data from multiple brain states and the resultant NSIs could
measure deviations of brain activities from the corresponding brain states and together
may provide insights into brain nonstationarity. This study also modified the NSI used
in [3, 4] to effectively measure model errors while ICA was applied to the new data and
to reduce false alarms caused by artifacts. This study tested the hypothesis with EEG
data collected from eight healthy volunteers performing a sustained-attention driving
task [2, 5], where the subjects’ brain states could be inferred by their behavioral
performance.

2 Methods

2.1 Independent Component Analysis (ICA) Model

Standard ICA assumes a linear generative model, x ¼ As, where x is N-by-T mea-
surements (N: number of channels, T: number of time samples), s is unknown N-by-T
source activities, and A is an unknown N-by-N mixing matrix. The blind separation of
A and s can be solved by maximizing independence between sources, and the Info-
max ICA [6] with natural gradient [7] has been used for efficient optimization with a
general learning rule:

W  Wþ g I � f ðyÞ � yT� �
W ð1Þ

where y ¼ Ws, W is an “unmixing” matrix that ideally satisfies WA ¼ I such that
y ¼ s, I is an identify matrix, g is a learning rate, and f is a nonlinear function and is
chosen differently across algorithms:

f ðyÞ ¼ 1� e�yð Þ= 1þ e�yð Þ; Infomax ICA
tanh yð Þþ y; Extended Infomax ICA

�

The nonlinear functions defined above are for separating supergaussian sources,
where most of sources in EEG data are supergaussian-distributed [3]. The learning in
Eq. (1) stops when W converges, i.e. f � yT� � ¼ I, where �h i represents an average over
a block of data.
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2.2 The Nonstationarity Index (NSI)

Recent studies [3, 4] have proposed that, instead of using f � yT� �
as the ICA convergence

criterion, this value could be a nonstationarity index that evaluates how well a modelW
fits new data. This index has been demonstrated to successfully detect abrupt electrode
displacements [3] and changes of underlying sources [4] in simulated EEG data.

In this paper, instead of using the index to evaluate the performance of the adaptive
ICA model described in [3, 4], we proposed to use the NSI to continuously and
quantitatively assess deviations of brain activities from a fixed ICA model, W0, of a
known brain state. Specifically, we learned the model from a small amount of training
data, applied the model to test data, x, in a sliding-window fashion, and computed a
modified Nonstationarity Index (NSI):

NSI ¼
f i � yTj

D E
i 6¼j

����
����
F

y � yTh ik kF
ð2Þ

where y ¼ W0x; f i � yTj
D E

i6¼j
represents off-diagonal elements of f � yTh i, and �k kF is

the Frobenius norm. The numerator indicates the cross-talk errors of all sources in the
model, W0, when it fits the test data, removing the contributions of individual sources
(diagonal elements); the denominator represents the covariance of the source activities
and is applied to reduce false alarms of NSI caused by high-amplitude artifacts. A low
NSI indicates that the model fits test data well and both training and test data are arising
from the same set of brain sources. On the other hand, a high NSI represents the model
fails to fit test data and thus the brain state has “shifted away” from that of the training
data. The proposed NSI illustrates better empirical results and intuition compared to the
NSI defined in [3, 4].

3 Materials

3.1 The Sustained Attention Task and EEG Data Processing

This study used the EEG data collected from eight subjects performing a sustained-
attention driving task, which were analyzed and reported in [2]. During the task, the
subjects were immersed in a driving simulator, where they were presented with
lane-departure events and were instructed to steer the car back to the cruising position
quickly. The duration from the onset of a lane-departure event to the onset of their
responses was defined as reaction time (RT), which has been reported to be associated
with alertness level or vigilance state [2, 8] The experiment lasted for 90 min such that
various alertness levels were observed.

For each subject, 30-channel EEG data were recorded, band-pass filtered to
1–50 Hz, and down-sampled to 250 Hz. Bad channels in the recordings such as flat
channels (due to poor contacts of electrodes) and poorly correlated channels (with
single-channel isolated noises) were removed and interpolated using the PREP pipeline
[9]. Furthermore, an online-capable artifact removal method, artifact subspace
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reconstruction (ASR) [10], was applied to reduce the effects of high-amplitude artifacts.
These artifact-reduction methods facilitated the convergence of an ICA model.

3.2 EEG Analysis I: Relations Between NSI and RT Across Subjects

For each subject, the first 3-min EEG data were used to train an ICA model (W0 in
Eq. (1)) using the non-extended Infomax ICA implemented in EEGLAB [11]. It is
worth noting that both the extended and non-extended Infomax ICA algorithms
returned comparable results; we chose the one with less computational complexity.
Principle Component Analysis (PCA) was applied before ICA to account for loss of
data rank due to the removal of bad channels. The ICA model was then applied to the
subsequent EEG data in a 30-s sliding window, and the NSI of the window was
computed using Eq. (2) with f yð Þ ¼ 1� e�yð Þ= 1þ e�yð Þ.

The lane-departure trials were divided into three groups based on their RTs:
short-RT (top 20 % trials with the shortest RT), moderate-RT (the top 20 % to 80 %
trials), and long-RT (the bottom 20 % trials) groups according to [2]. Choosing the
uneven numbers of trials in each group was because the RTs in the session were not
normally distributed and the majority of trials had moderate RTs around one second.
The NSI of each trial was defined as the NSI of the 30-s window right before the onset
of the lane-departure event. Finally, the NSIs of all trials were z-scored within each
session to remove inter-session variability, and three groups of trials were separately
pooled across all subjects. For each pooled group of trials, its NSI’s mean and standard
error of mean were computed and two-sample unpaired t-test was performed to
investigate the relations between the NSIs and the RTs.

3.3 EEG Analysis II: Comparisons of ICA Models and NSIs

To test the hypothesis that ICA models of different brain states and the resultant NSIs
could measure deviations of brain activities from the corresponding brain states, we
selected a typical subject who had significant fluctuations in RTs (local nonstationarity)
through the session as an example. Under the assumption that behavioral performance
(RT) reflects the subject’s brain states (alertness vs. drowsiness states), we learned three
ICA models based on 3-min data from different periods of the session: (a) an initial
model using the first three minutes of the experiment (the black block in Fig. 1), (b) a
drowsiness model using the data between minutes 15–18 (the red block in Fig. 1)
where RTs were long, and (c) an alertness model using the data between minutes 40–43
(the green block in Fig. 1) where RTs were short. The same analysis (e.g. computation
of NSI and grouping of trials) described in Sect. 3.2 was applied to the data from the
subject except that no z-scoring of NSI and pooling of trials were needed for a single
subject.
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4 Results

4.1 Relations Between NSIs and RTs Across Subjects

Figure 2 shows that the z-scored NSI of the short-RT trials were significantly lower
than that of the moderate-RT trials, and the NSI of the moderate-RT trials were sig-
nificantly lower than that of the long-RT trials. This result might have been due to the
fact that the ICA model used to compute the NSI was trained with the first 3-min of the
data where the subjects were fairly alert, evident from short RTs in response to
lane-deviations within this period. The model therefore fitted the EEG data in alertness,
and low NSI values were found for short-RT trials. In contrast, the model did not fit the
EEG activities in drowsiness and resulted in high NSI values in long-RT trials. In sum,
higher NSI value was associated with higher RT, suggesting that NSI could assess the
deviations of current brain activities from the model trained with the data from the first
three minutes of the experiment.

Fig. 1. The single-trial reaction times (RTs) over a 95-min experiment of a subject performing a
lane-departure task. In the first 5 min of the session, the subject stayed alert and the RTs were
short; from minutes 5 to 20, the subject had increased RTs that indicated drowsiness; from
minutes 20 to 55, the subject performed very well again and went back to alertness state; from
minute 55 to the end of the session, the subject had intermittent performance. Three 3-min blocks
of data, on which ICA models were trained, were shown in the colored regions: Model I (Initial)
0–3 min, black; Model D (Drowsiness) 15–18 min, red; Model A (alertness) 40–43 min, green.
(Color figure online)
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4.2 Comparisons of ICA Models and NSIs

Figure 3 shows the validity and comparisons of the three ICA models as described in
Sect. 3.3 (cf. Fig. 1). The models trained with 3-min of 30-channel EEG data
(250� 60� 3 ¼ 45k samples) using the Infomax ICA were able to converge to ICs
that were comparable and consistent with previous findings in [8]. Firstly, all three
models successfully identified occipital, parietal, motor, central, and frontal compo-
nents reported in [2, 8]. Secondly, we found appreciable differences between resultant
component scalp maps obtained by the three ICA models trained with data from
different brain states.

Fig. 2. The nonstationarity index (NSI) of short-RT, moderate-RT and long-RT trials from eight
subjects using individual initial models (trained with the first three minutes of the data in each
session). The NSIs of all trials were z-scored within each session. The error bars show the
within-group standard error of mean across all subjects. The significance levels between each two
groups were computed by unpaired t-tests.

Fig. 3. Scalp maps of the select ICs from the three ICA models: (a) Model initial, (b) Model
drowsiness, and (c) Model alertness. Occipital, parietal, motor, central, and frontal ICs were
manually identified and grouped for comparisons.
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Figure 4 shows that both the initial model (Fig. 4a) and the alertness model
(Fig. 4c) fitted the data of the short-RT trials well and resulted in lower NSI values than
that of the moderate-RT trials; and the NSI values of the moderate-RT trials were
significantly lower than that of the long-RT trials. On the other hand, the drowsiness
model (Fig. 4b) fitted the data of the long-RT trials better and resulted in significantly
lower NSI values than that of the moderate-RT and the short-RT trials.

In summary, the NSI of the drowsiness model was negatively correlated with RT
while that of the alertness model was positively correlated with RT. Since the initial
and the alertness model were trained with data from short-RT trials (corresponding to
an alertness state), when the subject became drowsy, the brain activities have signifi-
cantly changed from the data used to train the alertness model, leading to higher NSI
values. In contrast, the drowsiness model was trained with the data from long-RT trials
(corresponding to a drowsiness state), and thus higher NSI values were observed when
the subject returned to alertness because the brain activities have significantly changed
from the data used to train the drowsiness model.

Fig. 4. The nonstationarity index of short-RT, moderate-RT and long-RT trials of the subject
using three ICA models (shown in Fig. 1): (a) Initial model, (b) Drowsiness model, and
(c) Alertness model. The error bars show the standard deviation within trials in each group.
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Furthermore, the alertness model induced more significant differences in the NSIs
between long-RT and short-RT trials than the initial model did, suggesting that training
with data from shorter-RT trials could result in a more accurate model for the alertness
state and a more effective NSI in tracking the corresponding nonstationarity.

5 Discussion and Future Work

Study results showed that the proposed ICA model-based NSI could quantitatively
measure deviations of brain activities from the ICA model of a known brain state, e.g.
alertness or drowsiness states, and the deviations or model errors correlated with the
subjects’ behavioral performance (RT) in the sustained-attention task. Furthermore, the
NSIs based on multiple ICA models could all monitor the nonstationarity of the cor-
responding brain states. The results were comparable and consistent across eight
subjects. These empirical results supported the hypothesis that brain nonstationarity can
be modeled as changes of co-activated sources and their activities, and the proposed
ICA model-based NSI can track this nonstationarity.

There is still room for improvement as the current NSI was still susceptible to EEG
artifacts and the ICA model trained with the first three minutes of data was not yet
optimal. Future work includes the development of new methods to improve the model
performance and the robustness of the NSI to artifacts.

Finally, it is worth noting that the proposed approach is online-capable and can be
used to track brain nonstationarity in near real-time, which enables many clinical and
non-clinical applications that require continuous monitoring of the brain states.
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